Nüve Forum

Nüve Forum > kütüphane > Bilim ve Teknoloji > Bilim Adamları > bilim adamları(harf sıralamasına göre)

Bilim Adamları hakkinda bilim adamları(harf sıralamasına göre) ile ilgili bilgiler


büyük plinius Eski Romalı doğa bilgini ve ansiklopedi yazarı Plinius’un, Historia Naturalis adlı yapıtı, en geniş kapsamlı ilk ansiklopedi olarak kabul edilir. Tam adı Gaius Plinius Secundus’tur ve "Genç Plinius"

Cevapla

 

LinkBack Seçenekler Stil
  #21  
Alt 02.03.07, 18:40
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

büyük plinius

Eski Romalı doğa bilgini ve ansiklopedi yazarı Plinius’un, Historia Naturalis adlı yapıtı, en geniş kapsamlı ilk ansiklopedi olarak kabul edilir. Tam adı Gaius Plinius Secundus’tur ve "Genç Plinius" adıyla tanınarak konsüllüğe dek yükselmiş ünlü bir yazar olan yeğeni Gaius Plinius Caecilius Sencundus’tan ayırt etmek üzere "Büyük Plinius" diye anılır.

Şövalye sınıfından varlıklı bir ailenin oğlu olan Büyük Plinius, edebiyat, güzel söz söyleme sanatı ve hukuk okuyarak iyi bir öğrenim görmesi için, on iki yaşındayken Roma’ya gönderildi. 47’de, toplumun yalnızca üst sınıflarına tanınmış bir hak olan devlet memurluğunun ilk aşamasındaki askerlik görevine başladı ve Germanya’daki bir süvari birliğinin komutanlığına getirildi.

Askerlik ve tarih konusundaki yapıtlarıyla ilk yazarlık ürünlerini verdiği bu on yıllık görev süresinin bitiminde, İtalya’ya döndü ve büyük olasılıkla Roma’da hukuk öğrenimini tamamlayarak avukatlığa başladı.

Siyasal bir görev almaktan kaçınıp, yalnızca dil bilgisi, konuşma sanatı gibi sakıncasız konularda yapıt verdiği ve yoğun bir araştırmaya yöneldiği o yıllar, Neron’un imparatorluk dönemine rastlar.

Plinius, bilim tarihindeki yerini, o güne değin edinilmiş tüm bilgileri derlemek amacıyla kaleme aldığı, insanlık tarihinin ilk ansiklopedisi sayılan dev yapıtına borçludur. "Doğa Tarihi" adı altında birleştirilmiş otuz yedi kitaptan olşan bu yapıt, 500’e yakın Eski Yunanlı ve Romalı yazarın bıraktığı 2 bini aşkın kitabın içeriğinden özetlenmiş yoğun bir bilgi derlemesidir.

Tüm yaşamını her konuda bilgi derlemeye adayan ve yorulmak bilmez bir araştırmacı olan Plinius’un ansiklopedisi, ne yazık ki duyduğu her bilgiyi ayrım yapmaksızın ve sınamaksızın yapıtına aldığı için çük büyük yanlışlarla doludur ve bilimsel olmaktan çok uzaktır.

Özellikle hayvanlarla ilgili bölümlerinde efsane yaratıklara, garip canavarlara ve bu yaratıklar üzerine söylenmiş inanılmaz öykülere yer vermesi, yapıtın bilimsel değerine büyük ölçüde gölge düşürmüşse de, Eskiçağ sanatına ilişkin son ciltlerin belgesel değeri ve Yunanca bitki ya da hayvan adlarının Latince karşılıklarını veren terimleme çalışmaları, yapıtın ününün bugüne değin süregelmesi için yeterli olmuştur.
Alıntı ile Cevapla
  #22  
Alt 02.03.07, 18:40
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

cabir ibn hayyan
Yapmış olduğu kuramsal ve deneysel araştırmalarla kimyanın gelişimini büyük ölçüde etkilemiş olan Câbir ibn Hayyân'ın hayatı hakkında pek fazla bir bilgiye sahip değiliz. Diğer Müslüman bilginler ve kimyacılar gibi, Câbir de, Aristoteles'i izleyerek maddeyi dört unsur (toprak, su, hava ve ateş) kuramıyla açıklamaya çalışmış ve bu unsurların nitelikleri (kuru-yaş ve soğuk-sıcak) farklı olduğu için bunların birleşmesinden oluşan maddelerin de farklı özelliklere sahip olduğunu belirtmiştir. Hellenistik dönem simyagerlerinden de etkilenmiş olan Câbir ibn Hayyân, Yeryüzü'ndeki bütün maddeleri 3 ana grupta toplamıştır:

Alkol gibi uçucu olan gazlar.
Altın, gümüş, bakır ve kurşun gibi metaller.
Bazı boya maddeleri gibi, uçucu ve metalik olmayan ara maddeler.
Cabir ibn Hayyan'a göre, bütün maddeler doğada saf olarak bulunmaz ama damıtma işlemiyle onları saflaştırmak olanaklıdır; ayrıca sadece cansızları oluşturan maddeler değil, canlıları oluşturan maddeler de damıtılabilir. Söylediğine bakılırsa, suyu 700 defa damıtmış ve sonuçta bu unsurdaki yaşlık niteliğini yok ederek, sadece soğuk niteliğini içeren saf elementi elde etmeyi başarmıştır. Organik kökenli maddeleri damıtmak suretiyle, Câbir'in çeşitli boyaları, yağları ve tuzları elde ettiği bilinmektedir.

Câbir ibn Hayyân metallerin oluşumunu, daha önce de söz konusu edilen kükürt-cıva kuramıyla açıklamak istemiştir. Bilindiği gibi, kükürt-cıva kuramının kökeninde, Yunan Dünyası'nda özellikle Pythagorasçılar tarafından savunulmuş olan ikilem görüşü bulunmaktadır; bu görüşe göre, her şey, kadın-erkek ve iyi-kötü gibi ikilemler çerçevesinde oluşur ve anlaşılır. Bu görüş daha sonraları, 16. yüzyılda Paracelsus (1493-1541) ve onu destekleyenler tarafından yeniden ele alınacak ve bu temel üzerinde, yeni bir ikilem olan Asit-Baz Kuramı biçimlendirilecektir.

Metallerin oluşumunu açıklamak maksadıyla ortaya atılmış olan kükürt-cıva kuramına göre, altın, gümüş ve bakır gibi metallerin birbirlerinden farklı olmalarında, bunların temelini teşkil eden kükürdün farklılığı kadar, oluşmaları sırasındaki ısı farkları ve Güneş ışığı da önemli bir rol oynar. Yeni bir metal meydana getirmek üzere birleşen kükürt ve cıva daha önceki özelliklerini terkederek yeni bir birim oluştururlar.

Câbir'in bildiği metaller altın, gümüş, bakır, demir, kurşun ve kalaydan ibarettir. Kimya alanına önemli katkılarda bulunmuş olmakla birlikte, Câbir de tipik bir simyager gibi el-iksir elde etmek üzere birçok deney yapmış ve çeşitli el-iksir formülleri geliştirmiştir. Câbir ibn Hayyân'ın yapmış olduğu araştırmalar sonucunda, kimya bilimine yapmış olduğu katkıları üç madde altında toparlamak olanaklıdır:

Element görüşünün oluşmasına yardımcı olmuştur.

Deneylerinde, ölçü ve tartı işlemleri üzerinde hassasiyetle durduğu için, nicelik anlayışının güçlenmesini sağlamıştır.

Çalışmaları sırasında geliştirmiş olduğu yeni aletlerle kimya teknolojisinin ilerlemesine aracı olmuştur.



Alıntı ile Cevapla
  #23  
Alt 02.03.07, 18:41
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

Carl Friedrich Gauss
Fakir bir Alman ailenin çocuğu olan ve "Matematiğin Prensi" olarak anılan Gauss'un (1777-1855) dehası çok erken yaşlarda kendini göstermiş ve konuşmayı öğrenmeden önce toplama ve çıkarma yapmayı öğrenmiştir.

Güç koşullar altında sürdürdüğü eğitimini, 14 yaşındayken bir asilin sağladığı destekle güvence altına alabilmiştir. 16 yaşında Eukleides Geometrisi'nin alternatifi olacak yeni bir geometri tasarlamış ve 18 yaşındayken Lagrange ve Newton'un eserlerini incelemiştir.

Üniversitede öğrenciyken, sadece pergel ve cetvel kullanarak 17 kenarlı düzgün bir çokgenin çizilmesi metodunu bulmuştur. Bu buluşundan çok mutlu olmuş ve mezarının üzerine bu çokgenin oyulmasını istemiştir. Archimedes tarafından başlatılan bu geleneğin birçok matematikçiyi etkilediği anlaşılmaktadır.

Sayılar teorisi üzerine yazmış olduğu ilk büyük eseri "Disquistiones Arithmeticae" (Aritmetik Araştırmaları) ona şimdiki ününü kazandırmıştır. Eseri okuyan Lagrange, Gauss'a şunları yazmıştır: "Eseriniz sizi bir anda birinci sınıf matematikçiler arasına yükseltmiştir. Uzun zamandan beri yapılmış en güzel analitik keşfi ihtiva eden son bölümü çok önemli kabul ediyorum."

Gauss'un bu yapıtı modern sayılar teorisine temel olmuştur. Ona göre, sayılar teorisi çok önemlidir: "Matematik, bilimlerin kraliçesi olduğu gibi, sayılar teorisi de matematiğin kraliçesidir." Yeni yüzyılın ilk gününde (1 Ocak 1801) Ceres adı verilen gezegenciğin bulunması, Gauss'un astronomiye ilgisini uyandırmıştır; az sayıda gözlemden yararlanarak bu gezegenciğin yörüngesini hesaplama sorununu, Gauss, 8. dereceden bir denklem yardımıyla çözmüştür.

1802'de bulunan diğer bir gezegencik olan Pallas ile de ilgilenmiştir. İkinci eseri, bu iki gezegenciğin hareketleriyle ilgilidir. 1821 yılında Gauss, resmi bir jeodezi araştırmasına bilim danışmanı olmuş ve bu görevi ona yüzeyler ve haritacılıkla ilgili yeni teoriler ilham etmiştir.

Yıllar geçtikçe Gauss'un ilgisi matematiksel fiziğe ve karmaşık geometri araştırmalarına yönelmiştir. Bu dönemde Yer'in magnetik alanı üzerine deneysel çalışmalar yapmış ve uzaklığın karesiyle ters orantılı olarak etkileyen kuvvetler kuramını ileri sürmüştür.

1833 yılında Weber ile birlikte bir elektrik telgrafı kurmuş ve bununla düzenli mesajlar göndermiştir. Onun elektromagnetizm ile ilgili araştırmalarının 19. yüzyılda fizik biliminin gelişmesine büyük katkısı olmuştur.

Günlüklerinin ve mektuplarının ortaya çıkması, bazı önemli düşüncelerini kendisine saklamış olduğunu göstermiştir; bu belgelerden, Gauss'un 1800 gibi erken bir tarihte, eliptik fonksiyonları keşfetmiş olduğu ve 1816'da Eukleides-dışı geometriyi bildiği anlaşılmaktadır. Eukleidesçi uzay kavramının apriori (önsel) olduğunu savunan Kant'ın isabetliliğinden kuşkulanmış ve uzayın gerçek geometrisinin ancak deneyle bulunabileceğini düşünmüştür.

Gauss sadece bilimsel konularla ilgilenmemiştir; Avrupa edebiyatı, Yunan ve Roma klâsikleri, Dünya politikası, botanik ve mineroloji gibi konular da ilgi alanına girmektedir. Ana dili Almanca ile birlikte, Latince, İngilizce, Danimarkaca ve Fransızca okuyabildiği ve yazabildiği bilinmektedir; 62 yaşında bu dillere Rusça'yı da eklemeye karar vermiş ve iki yıl içinde bu dili de öğrenmiştir.



Alıntı ile Cevapla
  #24  
Alt 02.03.07, 18:42
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

charles darwin
1809 -1882) Düşünce tarihinde pek az bilim adamı Darwin ölçüsünde tepki çekmiştir. Evrim kuramını içine sindiremeyenler onu hiç bir zaman bağışlamamışlardır. Yaşadığı dönemde, "Maymunla akrabalık bağın annen tarafından mı, baban tarafından mı?" diye alaya alınmıştı. Günümüzde ise daha ileri giden, onu bir "şarlatan", dahası bir "şeytan" diye karalamak isteyen çevreler vardır.

Bir bilim adamına gösterilen bu tepkinin nedeni neydi? Darwin kimdir, ne yapmıştı?

Darwin küçük yaşında iken de horlanmıştı, hem de babası tarafından: "Seni, anlaşılan, ava çıkma, köpeklerle eğlenme ve fare yakalama dışında hiç bir şey ilgilendirmiyor. Geleceğin, kendin ve ailen için yüz karası olacaktır!"

Geleceğinin yüz karası olacağı söylenen çocuk, biyolojinin anıt yapıtı Türlerin Kökeni'nin yazarı, tüm çağların sayılı bilim adamlarından biri olur.

Varlıklı bir ailenin çocuğu olarak dünyaya gelen Charles Darwin, sekiz yaşına geldiğinde annesini yitirir. Çocuğunun iyi yetişmesi yolunda hiç bir şey esirgemeyen babası başarılı ve saygın bir hekimdi. Dedesi Erasmus Darwin, evrim konusuyla ilgilenen tanınmış bir doğa bilginiydi.

Entellektüel bir çevrede büyüyen Charles okulda parlak bir öğrenci değildi. Öğretmenleri arasında ona "aptal" gözüyle bakanlar bile vardı. Oysa bu bakış, yüzeysel bir izlenimi yansıtmaktaydı; sıkıntı Charles'ın okul programıyla bağdaşmayan kendine özgü ilgilerinden kaynaklanıyordu. Hayvanlara, özellikle böceklere derin bir ilgisi vardı. Daha küçük yaşında onu saran bu ilgi, ilerde belirginlik kazanan üstün gözlemleme yeteneğinin itici gücüydü.

Üniversitede, ilk iki yılını alan tıp öğrenimi başarısız geçer. Dönemin tartışma konuları arasında onu yalnızca canlıların kökeni sorunu ilgilendirmekteydi. Ama babası umudunu tümüyle yitirmek istemiyordu; hekim olmak istemeyen oğlunu hiç değilse din adamı olmaya ikna eder.

Edinburg'dan Cambridge Üniversitesine geçen delikanlı burada da, teoloji öğreniminin yanı sıra böcek toplama etkinliğini sürdürür; oluşturduğu zengin koleksiyonla bilim çevrelerinin beğenisini kazanır. Bu arada botanik ve jeoloji derslerini de izlemekten geri kalmaz.

Yirmi iki yaşında üniversiteyi bitirir, ama kilisede görev almaya yönelik değildir. Bir rastlantı, aradığı olanak kapısını ona açar. Güney Amerika kıyılarından başlayarak uzun süreli bir araştırma gezisine çıkmaya hazırlanan kraliyet gemisi Beagle'e doğa araştırmacısı aranmaktaydı. Botanik profesörünün tavsiyesi üzerine Darwin'e, masraflarını kendisinin karşılaması koşuluyla, bu görev verilir. Ancak genç bilim adamının babasının desteğini sağlaması kolay olmaz.

1831'de başlayan geziye Darwin beş yıl süren yoğun ve çetin bir uğraşla, dünyanın henüz bilinmeyen pek çok kıyı ve adalarında türlere ilişkin fosil ve örnekler toplar; gözlemsel bilgiler edinir, notlar alır. Doğa onun için tükenmez bir laboratuvardı. Özellikle Gallapagus adalarındaki dev kaplumbağalar ile kuşlar üzerindeki gözlemleri, değişik çevre koşullarında türlerin nasıl oluştuğu konusunda ona önemli ipuçları sağlamıştı. Kimi türlerin çevreyle uyum kurarak sürdürdüğü, kimi türlerin ise değişen koşullarda uyumsuzluğa düşerek yok olduğu izlenimi kaçınılmazdı.

Ülkesine döndüğünde Darwin'in yapması gereken şey, topladığı bilgileri işlemek, evrim olgusuna kanıtlara dayalı açıklık getirmekti. Ne var ki, bu kolay olmayacaktı. Bir kez toplanan gözlem verilerinin düzenlenmesi bile yıllar alacak bir işti. Sonra, evrim konusu dikenli bir sorundu; yerleşik önyargılara ters düşmek kolayca göze alınamazdı.

Darwin incelemelerinden türlerin sabit olmadığını, uzun süreli de olsa, çevre koşullarına göre değiştiğini öğrenmişti. Ama "evrim" denen bu değişimin düzeneği neydi? Bu soruya yanıt arayışı içinde olan Darwin'e 1838'de okuduğu bir kitap ışık tutar. Thomas Malthus'un yazdığı Nüfus Üzerine Deneme adlı bu kitap ilginç bir tez ortaya koyuyordu: canlılar için yaşam bir var olma ya da yok olma savaşımıdır; çünkü, hemen her çevrede, nüfus artışı beslenme olanaklarını kat kat aşmaktadır. Bu savaşımda güçlüler karşısında zayıf kalanlar yok olup gider; çevresiyle uyumsuzluğa düşenler elenirken, uyum kuranlar çoğalır.

19. yüzyılın acımasız kapitalizminin "laissez faire et laissez passer" (bırakınız yapsınlar, bırakınız geçsinler) sloganında da yansıyan bu düşünce, Darwin'in yirmi yıl sonra açıkladığı evrim kuramının özünü oluşturur: doğal seleksiyon evrimin itici gücü, ilerlemenin dayandığı düzenekti.

Evrim düşüncesi, insanın kendi varlık kökenini bilme merakım da içermektedir. İlkel topluluklarda bile kendini açığa vuran bu merakın özellikle mitoloji ve dinlerin oluşumundaki rolü yadsınamaz. Ancak bilim öncesi açıklamalar masalımsı birer öğreti niteliğindedir. Her şey gibi insan da Tanrısal gücün ürünüdür. Gelişmiş dinlerde bile evrim düşüncesi yer almamıştır.

Evrimden ilk söz edenler, M.Ö. 6. yüzyılda yaşayan İyonya'lı filozoflar olmuştur. Thales tüm nesneler gibi canlıların da sudan oluştuğu savındaydı. Daha çarpıcı görüşü onu izleyen Anaximander'de bulmaktayız: "Canlıların kaynağı denizdir. Başlangıçta balık olan atalarımızdan bugünkü formumuza evrimleşerek ulaştık." Gene o dönemin bir başka filozofu, Herakleitus, canlıların gelişmesinde aralarındaki çatışmanın rolüne değinir. Bunlardan ikiyüz yıl sonra gelen antik çağın ünlü filozofu Aristoteles'te evrim düşüncesi daha belirgindir. Onun görüşünde aşağıdaki ilginç noktaları bulmaktayız:

(1) Canlıların en ilkel düzeyde kendiliğinden oluştuğu,
(2) Organizmaların basitten daha karmaşık formlara doğru geliştiği,
(3) Canlıda organların ihtiyaca göre oluştuğu.

Ancak ortaçağ teolojisinde bu tür düşüncelere yer yoktu. Gerçek kutsal kitaplarda açıklanmıştı. Evrim düşüncesi bir sapıklıktı.

Evrime bilimsel yaklaşım, Aydınlık Çağı'nın sağladığı göreceli özgür düşünme ortamını bekler. Bu alanda ilk adımı Fransız doğa bilimcisi Buffon'un attığı söylenebilir. Buffon, canlıların sınıflanmasına ilişkin Aristoteles sistemini düzeltme ve geliştirme amacıyla çalışmaya koyulur. İlgilendiği konuların başında evrim geliyordu. Fosil ve diğer kanıtlara dayanarak canlı türlerin evrimle oluştuğu görüşüne ulaşmıştı. Ama kilisenin sert tepkisiyle karşılaşınca, Buffon, "Kutsal kitapta bildirilenlere ters düşen sözlerimi geri alıyorum" diyerek sessizliğe gömülür.

Ünlü isveç botanikçisi Linnaeus'un modern sınıflama yöntemine ilişkin çalışması evrim düşüncesine destek sağlayan başka bir girişimdir. Darwin'in dedesi Erasmus Darwin de, Buffon gibi, canlıların yaşam dönemlerinde edindikleri beceri veya özelliklerin yeni kuşaklara geçmesiyle evrimleştiği görüşündeydi.

Bu görüşü geliştiren Fransız doğa bilgini Lamarck ise evrim konusunda oldukça tutarlı ilk kuramı oluşturur. Kısaca, "canlıların yaşam dönemlerinde kazandıkları özelliklerin ya da uğradıkları değişikliklerin (bunlar çevre koşullarının etkisinde ortaya çıkabileceği gibi, organların kullanış veya kullanışsızlık nedeniylede olabilir) kalıtsal yoldan yeni kuşaklara geçtiği" diye özetleyebileceğimiz bu kuram, sağduyuya yatkın görünmesine karşın, bilim dünyasında beklenen ilgiyi bulmaz.

Kuramın olgusal içerik yönünden yetersizliği bir yana, bilinen kimi gözlemsel verilere ters düşmesi benimsenmesine olanak vermiyordu. Açıklama gücünü bugün de koruyan, daha kapsamlı ve tutarlı evrim kuramını Darwin'e borçluyuz. 1859'da yayımlanan Türlerin Kökeni adlı yapıtta ortaya konan bu kuramın benimsenmesine ortam hazırdı. Kısa sürede bir kaç yeni basım yapan kitap, insanlığın dünya anlayışında eşine pek rastlanmayan köklü bir devrime kapı açmaktaydı.

Dönemin seçkin bilginlerinden T. H. Huxley'in şu sözlerinin çağdaşı pek çok bilim adamının duygularını dile getirdiği söylenebilir: Biz türlerin oluşumuna ilişkin, doğruluğu olgusal olarak yoklanabilir bir açıklama arayışı içindeydik. Aradığımızı Türlerin Kökeni'nde bulduk. Kutsal kitabın masalımsı açıklaması geçerli olamazdı. Bilimsel görünen diğer açıklamaları da yeterli bulamıyorduk. Darwin kuramı her yönüyle bilimsel yeterlikte idi.

Kuramın dayandığı iki temel nokta vardır:

(1) Canlı dünyada, yeni türlerin oluşumuna yol açan sürekli ama yavaş giden değişim;

(2) "Doğal seleksiyon" dediğimiz evrim sürecini işler kılan düzenek.

Birinci nokta, türlerin sabitliği varsayımını içeren yerleşik öğretiye ters düşmekteydi. İkinci nokta, evrimin tüm ereksel görünümüne karşın salt mekanik terimlerle açıklanabileceğini göstermekteydi.

Darwin kuramının özünü oluşturan doğal seleksiyon, başlangıçtan günümüze değin, değişik eleştirilere uğramıştır. Bu nedenle, ilkenin öncelikle açıklığa kavuşturulması gerekir. Darwin'in evrim kuramı, gözlenebilir üç olgu ve iki ilke içerir.

İlk olgu, üreme biçimleri ne olursa olsun, canlıların geometrik diziyle çoğalma eğilimidir.

İkinci olgu, bu eğilime karşın türlerde nüfusun aşağı yukarı sabit kaldığıdır. Bu iki olgudan, Darwin 'yaşam savaşımı' ilkesine ulaşır.

Üçüncü olgu, canlıların (bir türü hatta bir aileyi oluşturan bireylerin bile) az ya da çok belirgin farklılıklar sergilemesidir. Yaşam savaşımı ilkesiyle birleşen bu olgu Darwin'i temel ilkesi olan doğal seleksiyon düşüncesine götürür. Belli bir çevrede farklı özellikler taşıyan bireyler arasında yaşam savaşımı varsa, doğal koşullara uyum bakımından, özellikleri üstünlük sağlayan bireylerin (veya türlerin) egemenlik kurması, diğerlerinin elenmesi kaçınılmazdır.

Evrim sürecinin dayandığı bu düzeneğe, tüm eleştiri ve uğraşlara karşın, daha geçerli diyebileceğimiz bir alternatif bulunamamıştır. Ayrıntılarında kimi değişikliklere uğramakla birlikte, kuramın sürgit Darwinci kalmayacağını gösteren herhangi bir belirti yoktur ortada!

Newton, yerçekimi ilkesiyle devinim yasalarının, yersel ya da göksel, tüm nesneler için geçerli genellemeler olduğunu göstermişti. Darwin de yaşam savaşımı, doğal seleksiyon, çevreye uyum gibi bir kaç ilke içeren kuramıyla evrim olgusuna bilimsel açıklama getirdi; insanın ottan çiçeğe, amipten maymuna uzanan canlı dünyanın bir parçası olduğunu gösterdi.
Alıntı ile Cevapla
  #25  
Alt 02.03.07, 18:43
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

Charles Francis Richter
ABD’li jeofizik ve sismoloji uzmanı Charles Richter, yer sarsıntılarının büyüklüğünü ölçmeye yarayan ve adıyla anılan bir ölçek geliştirmiştir.

1920’de Stanford Üniversitesi’nden fizik diplomasını, 1928’de Pasenda’daki California Institute of Technology’den kuramsal fizik doktarasını aldı ve aynı kuruluşun sismoloji laboratuvarında çalışmaya başladı.

1937’de öğretim üyeleri arasına katıldığı Caltech’te 1947’de doçentliğe, 1952’de sismoloji profesörlüğüne getirildi ve 1970’de emekliye ayrılmasına karşın, aynı kuruluşta emeritus profesör olarak çalışmalarını sürdürdü.

Deprem şiddetinin belirlenmesini amaçlayan ilk ölçek, 1883’te İtalyan Jeolog Rossi ile İsviçreli doğabilimci François A. Forel tarafından hazırlanmış ve herhangi bir fiziksel ölçüme göre değil, depremin Yeryüzü'ndeki etkilerine göre belirlenen 10 dereceye ayrılmıştı.

Rossi-Forel ölçeğinden sonra, 1902’de İtalyan Jeolog Giuseppe Mercalli, yine sarsıntının etkilerine göre derecelenmiş yeni bir ölçek yaptı. Uzun süre kullanılan 12 derece şiddetindeki depremin etkileri ise, genel panik, tüm yapıların yıkılması, çatlak ve oyukların açılması, nehirlerin yatak değiştirmesi şeklinde sıralanıyordu.

Her iki ölçek de tanımlayıcı olmakla birlikte, denizlerde ya da yerleşim bölgeleri dışındaki depremlerin şiddetini belirleme olanağı vermiyordu.

Richter’in Alman asıllı ABD’li Sismolog Beno Gutenberg ile birlikte hazırladığı Richter ölçeği ise, yer sarsıntılarının etkisini gözönünde bulundurmaksızın, doğrudan doğruya büyüklüğün ölçümüne dayanır.

Bir sansıntı anında çeşitli bögelere yerleştirilmiş aynı türden sismograflar aracılığıyla, deprem odağının tam üstüne rastlanan Yeryüzü'ndeki dış merkez (episantr) saptanır ve bu merkezden uzaklaştıkça azalan titreşim şiddetinin logaritmik eğrisi çıkartılır.

Ayrıca deprem sırasında açığa çıkan enerji miktarı (E), çizilen logaritmik eğri uyarınca, logE = 11,4 + 1,5 m (m=şiddet) bağıntısıyla erg cinsinden elde edilir. 0’dan 9’a dek derecelendirilmiş olan bu logaritmik ölçekte, örneğin 2 derecelik büyüklük açık ve seçik duyulabilir bir depremi anlatır, 7 derece büyüklüğündeki depremde ise duvarlar çatlar, bacalar devrilir.
Alıntı ile Cevapla
  #26  
Alt 02.03.07, 18:44
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

Chen Ning Yang
Çin asıllı ABD’li fizikçi Yang, temel parçacıkların zayıf etkileşmelerinde paritenin korunumu yasasının geçerli olmadığını belirlemiştir. 1942’de Kunming’deki Ulusal Güneybatı Birleşik Üniversitesi’nden lisans, iki yıl sonra Tsinghua Üniversitesi’nden yüksek lisans derecesini aldı ve burslu öğrenci olarak ABD’ye gitti. 1948’de Chicago Üniversitesi’nde doktora çalışmalarını tamamlayarak bir yıl Fermi’nin asistanlığını yaptı.

1955’te profesörlüğe yükselen Yang, 1965’ten sonra Stony Brook’daki New York Eyalet Üniversitesi’nde fizik profesörü ve kuramsal Fizik Enstitüsü’nün başkanı olarak görev yapmaktadır. Zayıf etkileşmelerde paritenin (uzayda sağ-sol simetrisinin) korunmadığını ortaya koyan çalışmaları nedeniyle 1957 Nobel Fizik Ödülü’nü Lee ile bölüşmüştür.

İstatistiksel mekanik ve kuantum alan kuramı gibi konularda bilime önemli katkılarda bulunan Yang’a ün ve Nobel Ödülü kazandıran en önemli çalışması, 1956’da Lee ile birlikte pritenin korunumu yasasının zayıf etkileşmeler için geçerli olmadığını göstermesi olmuştur.

O güne değin bütün fiziksel olayların sağ-sol bakışımı (simetrisi) gösterdiği, başka bir deyişle pariteyi koruduğu çok doğal bir ilke olarak kabul edilmiştir. Bu ilkenin geçerli olmasının doğal bir sonucu olarak, bir olayın sağ-sol bakışımlısının, yani "aynadaki görüntüsünün" de geçerli bir fiziksel olay olarak kabul edilmesi gerekiyordu.

O güne değin enerjinin ya da momentumun korunumu ilkeleri gibi evrensel bir geçerliliği olduğu sanılan paritenin korunumunun, o sıralarda yeni bulunmuş olan teta ve tau adlı mezonların bozunmalarında geçerli olmadığını gözlemleyen Yang ve Lee, bu bozunumların tıpkı radyoaktif beta bozunumu gibi zayıf etkileşmeler olduğu gerçeğinden yol çıkarak ve o güne değin yapılmış tüm beta bozunması deneylerini inceleyerek, bunlardan edinilen kuramsal bilgilerin ya da deney çözümlerinde kullanılan varsayımların zayıf etkileşmelerde paritenin korunduğuna ilişkin bir kanıt getirmediğini ortaya koydular.

Bu bulgularını deneysel olarak sınanması için yardım istedikleri Wu’nun, radyoaktif kobalt-60 çekirdeği üzerinde 1957’de gerçekleştirdiği deney de, zayıf etkileşmelerde paritenin korunmadığını kesin kanıtlarıyla doğruladı.
Alıntı ile Cevapla
  #27  
Alt 02.03.07, 18:45
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

Christiaan Huygens
1629 - 1695) Yüzyılımızın seçkin bir düşünürü (A.N. Whitehead), 17. yüzyılı "dâhiler yüzyılı" diye nitelemişti. Kepler, Galileo, Newton gibi hepimizin bildiği bu dâhilerden biri de Christiaan Huygens'ti Huygens biri pratik, diğeri teorik olmak üzere başlıca iki çalışmasıyla bilimin öncüleri arasında yer almayı başarmıştır.

Hollanda'da dünyaya gelen Christiaan, daha küçük yaşında, matematik ve bilime belirgin bir ilgi duymaktaydı. Aydın kesimde etkili kişiliğiyle tanınan babası, devlet adamlığının yanı sıra müzik ve şiirle de uğraşmaktaydı. Entellektüel bir ortamda yetişen Christiaan, üniversite öğrenimini tamamladıktan kısa bir süre sonra astronomi ve matematik konularında yayımladığı tezlerle bilim çevrelerinin, bu arada dönemin ünlü matematikçi-fîlozofu Rene Descartes'ın özel dikkatini çeker.

Huygens bilimsel çalışmalarına astronomide başlar. Teleskop daha yeni kullanılmaya başlanmıştı. Genç bilim adamı, geçimini gözlük camı yapmakla sağlayan filozof Spinoza ile işbirliğine girerek daha güçlü bir teleskop elde eder.

Gözlemleri arasında Satürn gezegeninin çevresindeki "hale" de vardı. Onun geniş, düz bir halkaya benzettiği bu hale aslında iri toz parçalarının oluşturduğu üç kuşak içermektedir. Optik araçlar üzerindeki çalışmasının izlerini günümüzde kullanılan araçların taşıdığı söylenebilir. Ama onu gününde, asıl üne kavuşturan şey, sarkaçlı saati icat etmesiydi. Gerçi Galileo daha önce zamanı belirlemede sarkaçtan yararlanılabileceğini ileri sürmüştü. Ancak yoğun çabalara karşın istenilen sonuca ulaşılamamıştı.

Huygens'in 1657'de yaptığı saat oldukça dakikti. Bu icat öncelikle denizcilikteki gereksinim göz önüne alınarak ortaya konmuştu. Ne var ki, beklenen sonuç tam gerçekleşmez. Yerçekiminin sarkaç üzerindeki etkisi gözden kaçmıştı. Bilindiği gibi belli bir yerde sarkacın her salınım süresi aynıdır. Ancak saat arzın merkezinden uzaklaştıkça (örneğin, yüksek bir dağ tepesine çıkarıldığında, ya da, ekvatora yaklaştırıldığında) salınım giderek yavaşlar, saat geri kalır.

Bunu daha sonra fark eden Huygens, yitirilen zaman miktarından arzın ekvatordaki şişkinliğinin hesaplanabileceğini bile gösterir.

Bu arada Huygens'in adı sınır ötesi bilim çevrelerinde de duyulmaya başlamıştır. 1663'te Royal Society (İngiliz Kraliyet Bilim Akademisi) onu, üyelik vererek onurlandırır. Huygens törene katılmak için Londra'ya gittiğinde Newton'la tanışır.

Newton çalışmalarını takdir ettiği bu yabancı bilim adamını ülkesinde tutmak için girişimlerde bulunur. Ama Huygens'e daha parlak bir öneri XIV. Louis'den gelir. Fransa'nın bilimde üstün bir konuma gelmesini sağlamaya çalışan Kral, Huygens'i bilimsel çalışmalara katılmak üzere Paris'e çağırır. Huygens, üstlendiği görevde, Fransa ile Hollanda arasında bu sırada çıkan savaşa karşın, aralıksız onbeş yıl kalır.

Üzerinde yoğun uğraş verdiği başlıca konu ışığın yapı ve devinim biçimiydi.

Işığın ne olduğu gizemli bir sorun olarak tarih boyunca ilgi çekmiştir. Antik Yunan bilginleri nesnelerin görünebilirliğini gözün yarattığı bir olay sayıyordu. Örneğin, Epicurus görüntünün gözden kaynaklanan resimlerden oluştuğunu ileri sürmüş, Platon ise gözün ve bakılan nesnenin saçtığı ışınların birleşimi olduğunu vurgulamıştı. Daha garip bir açıklamaya göre de, baktığımız nesneyi gözden fırlayan birtakım görünmez incelikte dokunaçlarla görmekteydik.

17. yüzyıla gelinceye dek ışık konusunda önemli bir gelişmeye tanık olmamaktayız; üstelik ışık deviniminin anlık bir olay olduğu görüşü yaygındı. Aslında doğal olan da buydu; çünkü, ışığın belli bir hızla devindiği sağduyuya pek yatkın bir düşünce değildi. Gözümüzü açar açmaz görmüyor muyduk?

Işığın belli bir hızla ilerlediği düşüncesini ilk kez Danimarkalı astronom Römer ortaya koyar. 1675'te Jüpiter gezegeninin birinci uydusunu gözlemlemekte olan Römer, uydunun çevresinde döndüğü gezegenin arkasında geçirdiği süreyi saptamak istiyordu. Değişik zamanlarda yaptığı ölçmelerin farklı sonuçlar vermesi şaşırtıcıydı. Römer bu tutarsızlığı açıklamalıydı.

Römer, Dünya ile Jüpiter'in güneş çevresindeki dolanımlarında kimi kez birbirlerine yaklaştıklarını, kimi kez uzaklaştıklarını biliyordu. Şaşırtıcı bulduğu olayın, iki gezegenin arasındaki mesafe ile bağıntılı olduğunu görür. Aradaki mesafe kısaldıkça uydunun gezegen arkasında geçirdiği sürenin azaldığını, mesafe uzadıkça sürenin arttığını saptayan Römer, bunu, ışığın belli bir hızla ilerlediği hipoteziyle açıklar. Işığın aldığı mesafe kısaldığında uydunun erken doğuşu kaçınılmazdı. Işığın belli bir hızla devindiği düşüncesi ister istemez başka bir soruya yol açmıştı: Işık nasıl devinmektedir? Huygens bu soruyu dalga kuramıyla, Newton parçacık kuramıyla yanıtlar.

Huygens ışığın dalga kuramını Fransızca kaleme aldığı Traite de la Lumiere (Işık Üzerine inceleme) adlı yapıtında ortaya koyar. Onun bu kurama yönelmesinde bir etken ışıkla ses arasında gördüğü benzerlikti. Bir başka etken de bir delikten çıkan ışığın yalnız tam karşısında ulaştığı noktadan değil çevredeki hemen her noktadan görülmesi olayıydı. Bu olay ışığın devinimini anlamak bakımından önemliydi.

Huygens'in "esir" kavramı bu işlevi sağlayacaktı. Bir benzetme olarak, demiryolunda biribirine dokunan ama bağlı olmayan bir dizi vagon düşünelim. Şimdi dizinin başındaki vagona lokomotifin hafif bir vuruş yapması nasıl bir sonuç doğurur? Darbeyi dizi boyu ileten vagonların yerlerinde kaldığı, yalnızca son vagonun uzaklaştığı görülür.

Nedenini, devinimin "etki - tepki" yasasında dile gelen ilişkide bulabiliriz: Vuruş etkisini bir sonraki vagona ileten her vagon aldığı tepkiyle dizideki yerinde kalır. Bir tepki almayan son vagon ise, aldığı vuruş etkisiyle diziden uzaklaşır. Verdiğimiz bu örnek dalga kuramına önemli bir açıdan ışık tutmaktadır. Huygens, uzayın, "esir" dediği görünmez bir nesneyle dolu olduğunu varsaymaktaydı. Buna göre, ışık bir yerden başka bir yere ilerlerken tıpkı vagonların ilettiği vuruş etkisiyle devinir, şu farkla ki, ilerleme tek bir yönde değil, esir ortamında tüm yönlerde oluşur. Nasıl ki, demiryolunda ilerleyen şey vagonlar değilse, uzayda da ilerleyen tanecik türünden nesneler değil, devinim dalgasıdır.

Huygens dalga kuramıyla ışığın yansıma, kırılma, kutuplaşma gibi davranışlarını da açıkladığı inancındaydı. Ne var ki, dalga kuramı, Newton'un parçacık kuramının gölgesinde, 19. yüzyıla gelinceye dek gözden uzak kalır.

Newton 1672'de Royal Society'ye sunduğu bildirisinde beyaz bir ışık ışınının cam prizmadan geçtiğinde gökkuşağındaki gibi bir renk spektrumu sergilediğini belirterek, bunun ışığın taneciklerden oluştuğu hipoteziyle açıklanabileceğini vurgulamıştı. Rakibi Robert Hooke'un eleştirisi karşısında daha esnek bir tutum içine giren Newton her ne kadar parçacık ve dalga kuramlarının ikisine de yer veren "karma" bir kuramdan söz ederse de sonuç değişmez; bilim çevreleri Newton'un büyüleyici etkisinde parçacık kuramına üstünlük tanır.

19. yüzyılın başlarında durumda beklenmedik bir gelişme olur; dalga kuramı yeniden ön plana çıkar. Işık üzerinde yeni deneylere girişen Thomas Young (1773-1829) elde ettiği verilerin ışığın dalga kuramıyla ancak açıklanabileceğini görür. Kaynağı ve sıcaklığı ne olursa olsun ışık hızının değişmemesi, seçilecek kuramın geçerlik ölçütü olmalıydı.

Young'a göre, dalgaların hızının aynı kalmasını bekleyebilirdik; ama tanecikler için aynı şey söylenemezdi. Gene, yansıma ve kırılmanın aynı zamanda olması, dalga açısından bakılınca doğaldı; oysa, taneciklerin bir bölümü yansırken, bir bölümünün kırılması açıklamasız kalan bir olaydı.

Öte yandan, Newton, ışığın dalga niteliğinde olması halinde doğrusal bir çizgide ilerlemesine, keskin gölge oluşturmasına olanak bulmamıştı. Young'ın buna yanıtı basitti: Dalga uzunlukları yeterince kısa ise, ışığın hem doğrusal devinimi, hem de keskin gölge oluşumu beklenebilirdi. Ayrıca, Young'ın "karışım" (interference), onu izleyen Fresnel'in "kırınım" (diffraction) denen olgulara getirdikleri açıklamalar dalga kuramını destekleyici nitelikteydi.

Daha sonra Maxwell'in dalga kuramını daha kullanışlı bulması da dengenin büsbütün parçacık kuramı aleyhine dönmesine yol açar. Ne var ki, yüzyılımızın başında durum bir kez daha değişir. Planck'ın kuvantum, Einstein'ın foto-elektrik kavramlarıyla ışığın parçacık kuramı yeniden ön plana çıkar.

Bugün ulaşılan düzeyde kuramlardan ne birinin ne ötekinin kesin egemenliğinden söz edilebilir. Bir bakıma Newton'un sözünü ettiği, şimdi kimi bilim adamlarının "wavicle" diye dile getirdikleri "dalga-tanecik" karması ya da ikilemiyle karşı karşıyayız. Geçici de olsa bu "barışıklık" aşamasında egemenlik paylaşılmış görünüyor. Huygens dalga kuramının öncüsü olarak bilim gündeminde yerini korumaktadır.
Alıntı ile Cevapla
  #28  
Alt 02.03.07, 18:45
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

conrad gesner
16. yüzyılda biyologlar, mümkün olduğunca bitki ve hayvanlarla ilgili bütün mevcut bilgiyi bir araya getirerek sunmaya çalışmışlar; bunların yanı sıra, yeni keşiflerle elde edilen bilgiyi de bir araya getirmeye gayret ettmişlerdir. Bu ansiklopedist doğa bilimcilere güzel bir örnekConrad Gesner'dir (1516-1565).

İsviçreli olan Gesner, "Hayvanlar Tarihi" (Historia Animalium) adlı 4 ciltten oluşan bir eser yazmıştır. Buradaki sınıflama, Aristoteles sınıflamasına uygundur. Bunlar içerisinde özellikle balıkların açıklaması dikkate değerdir. Omurgasız hayvanlar hakkındaki resim ve açıklamaları da aynı şekilde ilginçtir.

Gesner bu eserinde ele aldığı hayvanların her birinin adını, bu adın etimolojisini, hayvanın yaşadığı yeri, alışkanlıklarını, yararlarını, ilaç yapımında herhangi bir kısmı ya da ürününün kullanılıp kullanılmadığını ve o hayvan hakkında mevcut hikaye, inanç ve efsaneleri de aktarmıştır.

Gesner'in aynı zamanda kaleme alındıktan yaklaşık 200 yıl sonra yayınlanmış olan bir de botanik eseri vardır. Gesner, doğa aşığıdır; ne kendisinden önceki devrilerde ne de daha sonraki dönemlerde onun bir benzerine rastlamak mümkündür. Bitki ve hayvanların yanı sıra, cansız doğaya da büyük ilgi duymuş; dağları, ovaları incelemiştir. Ona göre doğaya sadece bitki toplamak için açılmak yeterli değildir; dağcılık apayrı, zevk veren bir uğraştır.
Alıntı ile Cevapla
  #29  
Alt 02.03.07, 18:46
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

copernicus
1473 - 1543) Düşünce tarihinde etkisi yönünden Copernicus devrimiyle boy ölçüşebilecek pek az dönüşüm vardır. Son dörtyüz yılda tanık olduğumuz bilimsel gelişmenin astronomide yer alan bu devrimle başladığı söylenebilir.

Dinsel bağnazlıkla özgür düşünce hemen her dönemde çatışma içinde olmuştur. Ortaçağ düşünce geleneğini kıran ilk bilimsel atılımın astronomide ortaya çıkması bir bakıma doğaldı. Birkez, astronomide hiç bir alanda olmayan bir bilgi birikimi vardı. Babillilerin göksel nesnelerin devinimlerine ilişkin gözlemlerini, kuramsal düzeyde işleyen eski Yunanlıların astronomide büyük ilerleme kaydettikleri bilinmektedir.

17. yüzyıla gelinceye dek egemenliğini sürdüren Ptolemy (Batlamyus) sistemi bu birikimin ürünüdür. Sonra, Rönesans'la birlikte, astronomide ivedi çözüm gerektiren pratik sorunlar ağırlık kazanmıştı. Bu sorunlardan biri denizde boylam hesaplanmasına ilişkindi. Bu ise, öncelikle, güneşin izler göründüğü yolun doğru belirlenmesini gerektiriyordu.

Çözümü aranan bir diğer sorun takvime ilişkindi. M. Ö. 46'da oluşturulan yürürlükteki takvim yetersizdi. Örneğin, o takvime göre, bir yıl 365 günden oluşuyordu (Oysa, şimdi bildiğimiz gibi yılın süresi bundan 11 dakika 14 saniye daha kısadır).

Ne var ki, bu türden nedenler, doğruluğu söz götürmez sayılan Ptolemy teorisinde köklü bir değişiklik için yeterli olamazdı. Astronomlar çoğunluk kimi düzeltmelerle yer-merkezli sistemin korunabileceği inanandaydılar. Nitekim, klasik dönemden beri kimi bilginlerce önerilen güneş-merkezli sistem onların gözünde saçma olmaktan ileri bir anlam taşımıyordu.

Yerleşik sistem nerdeyse bağnaz bir inanca dönüşmüştü. Öyle ki, ortaçağ sonlarına doğru Oresme ve daha sonra Cusalı Nicolas gibi bilginlerin yönelttikleri ciddi eleştiriler hiç bir etki uyandırmadan kalır. Yeni arayışların başladığı Rönesans'ta bile sistemin sarsılması kolay olmaz.

Copernicus'un daha öğrencilik yıllarında Ptolemy teorisine karşı içine düştüğü kuşku ve doyumsuzlukta kendisini önceleyen eleştiricilerin, özellikle hocası Novara'nın etkisi büyük olmuştur. Bologna üniversitesinde astronomi profesörü olan Novara, kilisenin o sıra içinde olduğu görecel hoşgörüden de yararlanarak, Ptolemy sistemine sert eleştiriler yöneltmekteydi.

Biraz önce de değindiğimiz gibi, Ptolemy sisteminin göksel olguları açıklamaya yönelik salt bir teori olmaktan ileri bir niteliği, dinsel ya da ideolojik bir bağışıklığı vardı. Sistem ortaçağ skolastik felsefesiyle bütünleşmiş, nerdeyse resmi bir kimlik kazanmıştı. Eleştirilerin, ne denli yerinde ve tutarlı olursa olsun, önemli bir etki yaratması beklenemezdi.

Sistemin sarsılması Rönesans'ın getirdiği yeni anlayışı, farklı kültür ortamını bekler. Rönesans sanatta parlak bir atılım olduğu kadar, sonunda din, bilim, politika ve ekonomide de geleneksel katı tutumları kıran, dünyaya yeni bir bakış açısı getiren uzun süreli bir dönüşümdür. Copernicus'un şansı, üstün zekâ ve güçlü öğrenme tutkusunun yanı sıra, her alanda yeni arayışların başladığı öyle bir dönemde dünyaya gelmiş olmasıdır.

Copernicus kimdi ve ne yaptı? Yalnız bilimde değil, insanlığın dünya görüşünde de büyük bir devrime yol açan çalışmasının kapsam ve niteliği neydi?

Nicolaus Copernicus Polonya'nın Torun kentinde üst-yaşam düzeyinde bir ailenin çocuğu olarak dünyaya geldi. On yaşında iken babasını yitirdi; bir bilgin-papaz olan amcasının koruyuculuğu altında büyüdü; aldığı eğitim daha çok teolojiye yönelikti. Ancak, Copernicus'un ilgi alanı belli bir konuyla sınırlanamayacak kadar genişti. Ülkesinde Cracow üniversitesini bitirdikten sonra İtalya'ya gider; Bologna, Padua ve Ferrara gibi dönemin seçkin üniversitelerinde astronomi, matematik, hukuk ve tıp dallarında altı yıl süren öğretim görür.

Bir süre Roma'da matematik profesörlüğü yaptıktan sonra ülkesine döner, kilisede üst-düzey bir görev üstlenir. Ayrıca, çeşitli devlet hizmetlerini sürdüren Copernicus bir ara ülkesini dış ilişkilerde diplomat olarak da temsil eder. Ne ki, onun asıl ilgi alanı astronomi idi. Aralıksız otuz yıl süren bir çalışmanın ürünü baş yapıtı Göksel Kürelerin Dönüşleri Üzerine arkadaşlarının ısrarı üzerine yayıma girer. Kitabının ilk nüshası Copernicus'a yaşamının son günlerinde hasta yatağında ulaşır.

Sorumuza dönelim: Copernicus devrimi nedir, niçin önemlidir?

Copernicus işe koyulduğunda ortaçağ dünya görüşüne karşı çıkma gibi bir niyeti yoktu. Aldığı eğitim temelde o görüşe dayanıyordu. Onun yapmak istediği çeşitli yönlerden yetersiz bulduğu Ptolemy astronomisini matematiksel olarak daha basit, kendi içinde uyumlu ve açıklama gücü daha yüksek bir sisteme dönüştürmekti.

Ptolemy teorisine göre, gökyüzü yıldızların "çakılı" olduğu dönen bir küreydi; dünya bu kürenin merkezinde sabit bir konuma sahipti; çevresinde ay, güneş ve gezegenleri taşıyan iç içe bir dizi kristal küre vardı. "Tanrısal bir düzen" diye imgelenen bu sistem, ayrıca insana evrenin merkezinde olma onur ve gururunu sağlamaktaydı.

Ne var ki, salt bilimsel açıdan bakıldığında sistem gereksiz yere karmaşık olduktan başka tutarsızdı. Sistemde birbirini tutmayan bir takım varsayımlar, ayaküstü gereksinmelere göre oluşturulan açıklamalar vardı. Benzetme yerindeyse, baş, gövde, el ve ayak gibi her parçası başka bir yerden derlenmiş bir heykelin acayip görüntüsünü sergiliyordu.

Copernicus astronomiyi basitleştirme ve tutarlı kılma girişiminde, kökü klasik çağa uzanan bir hipoteze başvurur (M. Ö. 3. yüzyılda Aristarcus adında bir bilgin, şimdi "güneş sistemi" dediğimiz sistemin merkezinde dünyanın değil, güneşin yer aldığını ileri sürmüş, ancak bağnaz çevrelerin tepkisiyle susturulmuştu).

Doğrusu, yalnız yerleşik öğretiye değil sağduyuya da ters düşen bu hipotezin bilim tarihindeki devrimsel sonucunu Copernicus'un öngördüğü kolayca söylenemez. Büyük olasılıkla, Aristarcus hipotezi onun gözünde göksel sisteme geometrik uyum sağlayan bir basitleştirme aracıydı. Nitekim, kitabın önsözünde önerilen yeni sistemin bilimsel doğruluğu değil, salt matematiksel geçerliği vurgulanıyordu.

Gerçekten, Copernicus teorisinin, dünyanın sistemdeki yeni konumu dışında köklü bir değişiklik içerdiği kolayca söylenemez. Bir kez sayılarını azaltmakla birlikte göksel kürelere ilişkin varsayımdan vazgeçilmemiştir. Sonra, gezegenlerin devinimlerinde düzgün çembersel yörüngeler izlediği görüşü korunmuştur. Üstelik yeni teori de gözlemsel verilerle uyum bakımından kimi güçlüklerle karşı karşıyaydı. Belki de biraz da bu nedenle 16. yüzyılın sonlarına gelinceye dek teori beklenen ilgiyi görmez; Ptolemy sistemi yürürlükte kalır.

Bilindiği gibi, Copernicus teorisi iki temel varsayım içermektedir: (1) Gezegenleri taşıyan göksel küreler dünyanın değil, güneşin çevresinde dönmektedir; (2) Dünya merkezde sabit değil, kendi ekseni çevresinde günlük, güneşin çevresinde yıllık dönüşler içindedir. Copernicus'u bu varsayımlara en başta gözlemsel verilerin yönelttiği kuşku götürmez. Bunun çarpıcı bir kanıtım şu sözlerinde bulmaktayız:

Kanımca, ileri sürdüğüm ilkeler soruna büyük bir basitlik getirmektedir. Ptolemy sisteminde olduğu gibi dünyayı merkezde sabit varsayma çok sayıda küre varsayımına yol açmış, bu da sorunu içinden çıkılmaz karışıklığa sokmuştur. Önerdiğim sistem ise, gereksiz ya da boş varsayımlara gitmeksizin, bir çok gözlem verisini tek nedenle açıklamaya elveren, gerçeği her yanıyla yansıtan bir sistemdir.

Bu ussal yaklaşım Copernicus'un çok iyi bilinen cephesi. Onun çoğu kez gözden kaçan bir başka cephesi daha var! Aşağıdaki alıntıda Copernicus'un evreni "ilkel" diyebileceğimiz büyülü bir dille betimleme yoluna gittiğini görmekteyiz:

Evrenin ortasında güneş taht kurmuştur. Bu görkemli tapınakta, çevresindeki herşeyi bir anda aydınlatan "güneş" dediğimiz nur kütlesi için daha saygın bir konum düşünülebilir miydi? Güneşi evrenin Lambası, Bilge yöneticisi diye övenler olmuştur: Hermes Trismegutus'un gözünde O ışıldayan Tanrı, Sophocles'in Elektra'sı için herşeyi gören yüce varlıktır. Güneş gerçekten tahtına kurulmuş Sultan gibi, çevresinde dolaşan gezegenleri çocukları gibi yönetir.

Copernicus'un bu duygusal yanıyla bir tür gizemcilik olan, teologların da paylaştığı bir felsefenin (Yeni-Platonculuk) etkisinde olduğu söylenebilir. Ama öylede olsa kilisenin resmi öğretiye ters düşen bir görüşü hoş karşılaması beklenemezdi. Ne ki, Bruno ve Galileo'ya gelinceye dek Katolik kilisesi belirgin bir tepki göstermez. Oysa protestan liderler daha baştan Copernicus'u kınama yoluna gitmişlerdi. "Bu budala" diyordu Luther, "astronomi bilimini altüst etme sevdasındadır. Oysa kutsal kitap arzın değil, güneşin döndüğünü bize bildirmiştir.... Bir yeni yetme astrologa halk kulak versin, olacak iş mi?"

Copernicus mistik eğilimlerine karşın bir astrolog değil, gerçek bir astronomdu. Tarih onu 17. yüzyıl bilimsel devrimine yol açan araştırma tutkusu ve atılımcı kişiliğiyle bize tanıtmaktadır.
Alıntı ile Cevapla
  #30  
Alt 02.03.07, 18:46
nuvekolik
Ziyaretçi
 
İletiler: n/a
Standart Ynt: bilim adamları(harf sıralamasına göre)

ctesibios
İskenderiye Mekanik Okulu'nun kurucusu olan Ctesibios, mekanik icatlarını içeren bir kitap kaleme almıştır; ancak bu kitap kaybolduğu için, çalışmaları, kendisinden sonra gelen mühendislerden ve mekanikçilerden öğrenilebilmiştir.

Ctesibios'un en önemli icatları arasında basma tulumba, su orgu ve su saati bulunmaktadır. Basma tulumbalarda üç önemli parçayı, yani silindir, piston ve valfı bir arada kullanmıştır. Basma tulumbalar daha sonra Philon tarafından geliştirilecektir. Hidrolik adı verilen su orgu, bu tulumbaların bir uygulamasıdır; burada amaç, aracı çalıştırmak için ciğerlerden değil, başka bir araçtan yararlanmaktır.

Ctesibios, daha önce de kullanılmış olan su saatlerini geliştirmiştir. Su saatlerinde karşılaşılan en önemli güçlük, delik kaptan akan su miktarının sabit tutulmasıdır; Ctesibios, bu maksatla bir musluktan sürekli su akışını sağlamış ve böylece ilk güvenilir su saatini yapmayı başarmıştır. Ayıca Ctesibios, su saatlerinde kabın altında bulunan deliğin zamanla aşınmasını önlemek amacı ile deliği cam ve altınla kaplamıştır. Böylece, saatler yoluyla eşit sürelerin belirlenmesi mümkün olacak ve zaman denetim altına alınacaktır.



Alıntı ile Cevapla
Cevapla

Tags
adamları(harf, bilim, göre), sıralamasına

Seçenekler
Stil

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık



Bütün zaman ayarları WEZ +2 olarak düzenlenmiştir. Şu anki saat: 18:29 .